Skip to contents

By default, all downloads are cached both on the disk and in your computer memory. This means that the second time you download a file during the same session it will be reloaded from your ram. If you stop a session and restart it, the file will be loaded from your disk. If you want to reload the data from its original source, use the bust_cache function.

Usage

cache_download(
  url,
  ...,
  use_memory = TRUE,
  use_disk = TRUE,
  bust_cache = FALSE
)

Arguments

url

The URL to download from.

...

arguments to forward to the vroom::vroom function.

use_memory

Whether to use memory caching.

use_disk

Whether to use disk caching.

bust_cache

Whether to bust (refresh) the cache.

Details

Additionally, options can be used to determine the default caching behavior of tidyiddr.

Examples

cache_download("https://s3.amazonaws.com/quartzdata/datasets/caserates-by-age.csv")
#> # A tibble: 132 × 11
#>    `0 - 4` `5 - 11` `12 - 15` `16 - 17` 18 - 2…¹ 30 - …² 40 - …³ 50 - …⁴ 65 - …⁵
#>      <dbl>    <dbl>     <dbl>     <dbl>    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1  29.2     28.7      41.9      77.3     169.    130.    116.     90.5    60.1 
#>  2  98.0    205.      160.      162.      160.    183.    163.    132.    103.  
#>  3  13.6     13.9      21.1      31.2      60.5    63.4    64.8    54.6    39.5 
#>  4 172.     305.      333.      350.      299.    317.    281.    218.    173.  
#>  5  37.7     40.1      65.7     114.      182.    150.    143.    115.     80.5 
#>  6   5.63     4.19      7.20     13.3      45.7    64.5    76.8    81.7    68.3 
#>  7  27.5     37.3      47.9      61.6      81.1    77.3    65.4    47.7    32.7 
#>  8   0.209    0.221     0.323     0.579     1.43    2.44    3.30    4.04    3.79
#>  9  35.5     43.8      44.4      50.3      68.3    66.5    59.0    50.2    44.1 
#> 10  16.1     18.0      25.2      31.6      39.8    39.0    34.1    27.1    18.0 
#> # … with 122 more rows, 2 more variables: `75+` <dbl>, week <date>, and
#> #   abbreviated variable names ¹​`18 - 29`, ²​`30 - 39`, ³​`40 - 49`, ⁴​`50 - 64`,
#> #   ⁵​`65 - 74`

options("tidyiddr_use_cache" = TRUE)
cache_download("https://s3.amazonaws.com/quartzdata/datasets/caserates-by-age.csv")
#> Rows: 132 Columns: 11
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> dbl  (10): 0 - 4, 5 - 11, 12 - 15, 16 - 17, 18 - 29, 30 - 39, 40 - 49, 50 - ...
#> date  (1): week
#> 
#>  Use `spec()` to retrieve the full column specification for this data.
#>  Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 132 × 11
#>    `0 - 4` `5 - 11` `12 - 15` `16 - 17` 18 - 2…¹ 30 - …² 40 - …³ 50 - …⁴ 65 - …⁵
#>      <dbl>    <dbl>     <dbl>     <dbl>    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1  29.2     28.7      41.9      77.3     169.    130.    116.     90.5    60.1 
#>  2  98.0    205.      160.      162.      160.    183.    163.    132.    103.  
#>  3  13.6     13.9      21.1      31.2      60.5    63.4    64.8    54.6    39.5 
#>  4 172.     305.      333.      350.      299.    317.    281.    218.    173.  
#>  5  37.7     40.1      65.7     114.      182.    150.    143.    115.     80.5 
#>  6   5.63     4.19      7.20     13.3      45.7    64.5    76.8    81.7    68.3 
#>  7  27.5     37.3      47.9      61.6      81.1    77.3    65.4    47.7    32.7 
#>  8   0.209    0.221     0.323     0.579     1.43    2.44    3.30    4.04    3.79
#>  9  35.5     43.8      44.4      50.3      68.3    66.5    59.0    50.2    44.1 
#> 10  16.1     18.0      25.2      31.6      39.8    39.0    34.1    27.1    18.0 
#> # … with 122 more rows, 2 more variables: `75+` <dbl>, week <date>, and
#> #   abbreviated variable names ¹​`18 - 29`, ²​`30 - 39`, ³​`40 - 49`, ⁴​`50 - 64`,
#> #   ⁵​`65 - 74`